Detoxification of a pyrolytic aqueous condensate from wheat straw for utilization as substrate in Aspergillus oryzae DSM 1863 cultivations

Author:

Kubisch ChristinORCID,Ochsenreither Katrin

Abstract

Abstract Background The pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw contains a variety of organic carbons and might therefore potentially serve as an inexpensive substrate for microbial growth. One of its main components is acetic acid, which was recently shown to be a suitable carbon source for the filamentous fungus Aspergillus oryzae. However, the condensate also contains numerous toxic compounds that inhibit fungal growth and result in a tolerance of only about 1%. Therefore, to enable the use of the PAC as sole substrate for A. oryzae cultivations, a pretreatment seems to be necessary. Results Various conditions for treatments with activated carbon, overliming, rotary evaporation and laccase were evaluated regarding fungal growth and the content of inhibitory model substances. Whereas the first three methods considerably increased the fungal tolerance to up to 1.625%, 12.5% and 30%, respectively, the enzymatic treatment did not result in any improvement. The optimum carbon load for the treatment with activated carbon was identified to be 10% (w/v) and overliming should ideally be performed at 100 °C and an initial pH of 12. The best detoxification results were achieved with rotary evaporation at 200 mbar as a complete removal of guaiacol and a strong reduction in the concentration of acetol, furfural, 2-cyclopenten-1-one and phenol by 84.9%, 95.4%, 97.7% and 86.2%, respectively, were observed. Subsequently, all possible combinations of the effective single methods were performed and rotary evaporation followed by overliming and activated carbon treatment proved to be most efficient as it enabled growth in 100% PAC shake-flask cultures and resulted in a maximum cell dry weight of 5.21 ± 0.46 g/L. Conclusion This study provides a comprehensive insight into the detoxification efficiency of a variety of treatment methods at multiple conditions. It was revealed that with a suitable combination of these methods, PAC toxicity can be reduced to such an extent that growth on pure condensate is possible. This can be considered as a first important step towards a microbial valorization of the pyrolytic side-stream with A. oryzae.

Funder

Bundesministerium für Bildung und Forschung

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3