Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate

Author:

Qi FengORCID,Shen Peijie,Hu Rongfei,Xue Ting,Jiang Xianzhang,Qin Lina,Chen Youqiang,Huang Jianzhong

Abstract

Abstract Background In this study, renewable tea waste hydrolysate was used as a sole carbon source for carotenoids and lipid production. A novel Rhodosporidium toruloides mutant strain, RM18, was isolated through atmospheric and room-temperature plasma mutagenesis and continuous domestication in tea waste hydrolysate from R. toruloides ACCC20341. Results RM18 produced a larger biomass and more carotenoids and α-linolenic acid compared with the control strain cultured in tea waste hydrolysate. The highest yields of torularhodin (481.92 μg/g DCW) and torulene (501 μg/g DCW) from RM18 cultured in tea waste hydrolysate were 12.86- and 1.5-fold higher, respectively, than that of the control strain. In addition, α-linolenic acid production from RM18 in TWH accounted for 5.5% of total lipids, which was 1.58 times more than that of the control strain. Transcriptomic profiling indicated that enhanced central metabolism and terpene biosynthesis led to improved carotenoids production, whereas aromatic amino acid synthesis and DNA damage checkpoint and sensing were probably relevant to tea waste hydrolysate tolerance. Conclusion Tea waste is suitable for the hydrolysis of microbial cell culture mediums. The R. toruloides mutant RM18 showed considerable carotenoids and lipid production cultured in tea waste hydrolysate, which makes it viable for industrial applications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3