Prospects of thermotolerant Kluyveromyces marxianus for high solids ethanol fermentation of lignocellulosic biomass

Author:

Sengupta Priya,Mohan Ramya,Wheeldon Ian,Kisailus David,Wyman Charles E.,Cai Charles M.

Abstract

AbstractSimultaneous saccharification and fermentation (SSF) is effective for minimizing sugar inhibition during high solids fermentation of biomass solids to ethanol. However, fungal enzymes used during SSF are optimal between 50 and 60 °C, whereas most fermentative yeast, such as Saccharomyces cerevisiae, do not tolerate temperatures above 37 °C. Kluyveromyces marxianus variant CBS 6556 is a thermotolerant eukaryote that thrives at 43 °C, thus potentially serving as a promising new host for SSF operation in biorefineries. Here, we attempt to leverage the thermotolerance of the strain to demonstrate the application of CBS 6556 in a high solids (up to 20 wt% insoluble solid loading) SSF configuration to understand its capabilities and limitations as compared to a proven SSF strain, S. cerevisiae D5A. For this study, we first pretreated hardwood poplar chips using Co-Solvent Enhanced Lignocellulosic Fractionation (CELF) to remove lignin and hemicellulose and to produce cellulose-enriched pretreated solids for SSF. Our results demonstrate that although CBS 6556 could not directly outperform D5A, it demonstrated similar tolerance to high gravity sugar solutions, superior growth rates at higher temperatures and higher early stage ethanol productivity. We discovered that CBS 6556’s membrane was particularly sensitive to higher ethanol concentrations causing it to suffer earlier fermentation arrest than D5A. Cross-examination of metabolite data between CBS 6556 and D5A and cell surface imaging suggests that the combined stresses of high ethanol concentrations and temperature to CBS 6556’s cell membrane was a primary factor limiting its ethanol productivity. Hence, we believe K. marxianus to be an excellent host for future genetic engineering efforts to improve membrane robustness especially at high temperatures in order to achieve higher ethanol productivity and titers, serving as a viable alternative to D5A.

Funder

U.S. Department of Agriculture

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3