Identification of blood-derived candidate gene markers and a new 7-gene diagnostic model for multiple sclerosis

Author:

Chen Xin,Hou Huiqing,Qiao Huimin,Fan Haolong,Zhao Tianyi,Dong Mei

Abstract

Abstract Background Multiple sclerosis (MS) is a central nervous system disease with a high disability rate. Modern molecular biology techniques have identified a number of key genes and diagnostic markers to MS, but the etiology and pathogenesis of MS remain unknown. Results In this study, the integration of three peripheral blood mononuclear cell (PBMC) microarray datasets and one peripheral blood T cells microarray dataset allowed comprehensive network and pathway analyses of the biological functions of MS-related genes. Differential expression analysis identified 78 significantly aberrantly expressed genes in MS, and further functional enrichment analysis showed that these genes were associated with innate immune response-activating signal transduction (p = 0.0017), neutrophil mediated immunity (p = 0.002), positive regulation of innate immune response (p = 0.004), IL-17 signaling pathway (p < 0.035) and other immune-related signaling pathways. In addition, a network of MS-specific protein–protein interactions (PPI) was constructed based on differential genes. Subsequent analysis of network topology properties identified the up-regulated CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, and RPL8 genes as the hub genes of the network, and they were also potential biomarkers of MS through Rap1 signaling pathway or leukocyte transendothelial migration. RT-qPCR results demonstrated that CXCR4 was obviously up-regulated, while ACTB, RHOA, and ITGAM were down-regulated in MS patient PBMC in comparison with normal samples. Finally, support vector machine was employed to establish a diagnostic model of MS with a high prediction performance in internal and external datasets (mean AUC = 0.97) and in different chip platform datasets (AUC = (0.93). Conclusion This study provides new understanding for the etiology/pathogenesis of MS, facilitating an early identification and prediction of MS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3