Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension

Author:

Park Shin Ae,Ko Ara,Lee Na Gyong

Abstract

Abstract Background Helicobacter pylori (Hp), a human pathogen that is associated with gastritis, peptic ulcer, and gastric cancer, has been considered a microaerophile, but there is no general consensus about its specific O2 requirements. A clear understanding of Hp physiology is needed to elucidate the pathogenic mechanism(s) of Hp infection. Results We cultured Hp under a range of O2 levels with or without 10% CO2 and evaluated growth profiles, morphology, intracellular pH, and energy metabolism. We found that, in the presence of 10% CO2, the normal atmospheric level of O2 inhibited Hp growth at low density but stimulated growth at a higher density. Field emission scanning electron microscopy and fluorescence microscopy of Hp cells cultured under 20% O2 tension revealed live spiral-shaped bacteria with outer membrane vesicles on a rugged cell surface, which became smooth during the stationary phase. Fermentation products including acetate, lactate, and succinate were detected in cell culture media grown under microaerobic conditions, but not under the aerobic condition. CO2 deprivation for less than 24 h did not markedly change cytoplasmic or periplasmic pH, suggesting that cellular pH homeostasis alone cannot account for the capnophilic nature of Hp. Further, CO2 deprivation significantly increased intracellular levels of ppGpp and ATP but significantly decreased cellular mRNA levels, suggesting induction of the stringent response. Conclusions We conclude, unlike previous reports, that H. pylori may be a capnophilic aerobe whose growth is promoted by atmospheric oxygen levels in the presence of 10% CO2. Our data also suggest that buffering of intracellular pH alone cannot account for the CO2 requirement of H. pylori and that CO2 deprivation initiates the stringent response in H. pylori. Our findings may provide new insight into the physiology of this fastidious human pathogen.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Helicobacter pylori in oral cavity: current knowledge;Clinical and Experimental Medicine;2024-09-04

2. Bacterial persisters: molecular mechanisms and therapeutic development;Signal Transduction and Targeted Therapy;2024-07-17

3. Helicobacter pylori CAs inhibition;The Enzymes;2024

4. Culture;Helicobacter pylori;2023

5. Helicobacter pylori in the Oral Cavity: Current Evidence and Potential Survival Strategies;International Journal of Molecular Sciences;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3