Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

Author:

Alves Eliana,Costa Liliana,Carvalho Carla MB,Tomé João PC,Faustino Maria A,Neves Maria GPMS,Tomé Augusto C,Cavaleiro José AS,Cunha Ângela,Almeida Adelaide

Abstract

Abstract Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural light conditions which makes this technology cheap and feasible in terms of the light source.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference42 articles.

1. Richardson SD, Thruston AD, Caughran TV, Chen PH, Collette TW, Schenck KM, Lykins BW, Rav-Acha C, Glezer V: Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Pollut. 2000, 123 (1): 95-102. 10.1023/A:1005265509813.

2. Jemli M, Alouini Z, Sabbahi S, Gueddari M: Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit. 2002, 4 (4): 511-516. 10.1039/b204637g.

3. Bonnett R, Buckley D, Galia A, Burrow T, Saville B: PDT sensitisers: a new approach to clinical applications. Biologic Effects of Light. Edited by: Jung EG, Holick MF. 1994, Berlin: de Gruyter, 303-311.

4. Wainwright M: Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998, 42 (1): 13-28. 10.1093/jac/42.1.13.

5. Makowski A, Wardas W: Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr Top Biophys. 2001, 19-25. 25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3