Indole is an inter-species biofilm signal mediated by SdiA

Author:

Lee Jintae,Jayaraman Arul,Wood Thomas K

Abstract

Abstract Background As a stationary phase signal, indole is secreted in large quantities into rich medium by Escherichia coli and has been shown to control several genes (e.g., astD, tnaB, gabT), multi-drug exporters, and the pathogenicity island of E. coli; however, its impact on biofilm formation has not been well-studied. Results Through a series of global transcriptome analyses, confocal microscopy, isogenic mutants, and dual-species biofilms, we show here that indole is a non-toxic signal that controls E. coli biofilms by repressing motility, inducing the sensor of the quorum sensing signal autoinducer-1 (SdiA), and influencing acid resistance (e.g., hdeABD, gadABCEX). Isogenic mutants showed these associated proteins are directly related to biofilm formation (e.g., the sdiA mutation increased biofilm formation 50-fold), and SdiA-mediated transcription was shown to be influenced by indole. The reduction in motility due to indole addition results in the biofilm architecture changing from scattered towers to flat colonies. Additionally, there are 12-fold more E. coli cells in dual-species biofilms grown in the presence of Pseudomonas cells engineered to express toluene o- monooxygenase (TOM, which converts indole to an insoluble indigoid) than in biofilms with pseudomonads that do not express TOM due to a 22-fold reduction in extracellular indole. Also, indole stimulates biofilm formation in pseudomonads. Further evidence that the indole effects are mediated by SdiA and homoserine lactone quorum sensing is that the addition of N-butyryl-, N-hexanoyl-, and N-octanoyl-L-homoserine lactones repress E. coli biofilm formation in the wild-type strain but not with the sdiA mutant. Conclusion Indole is an interspecies signal that decreases E. coli biofilms through SdiA and increases those of pseudomonads. Indole may be manipulated to control biofilm formation by oxygenases of bacteria that do not synthesize it in a dual-species biofilm. Furthermore, E. coli changes its biofilm in response to signals it cannot synthesize (homoserine lactones), and pseudomonads respond to signals they do not synthesize (indole).

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 396 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3