Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage

Author:

Ekhlas Daniel,Sanjuán Juan M. Ortiz,Manzanilla Edgar G.,Leonard Finola C.,Argüello Héctor,Burgess Catherine M.

Abstract

Abstract Background The prophylactic use of antimicrobials and zinc oxide (ZnO) in pig production was prohibited by the European Union in 2022 due to potential associations between antimicrobial and heavy metal usage with antimicrobial resistance (AMR) and concerns regarding environmental pollution. However, the effects of their usage on the bacterial AMR profiles on commercial pig farms are still not fully understood and previous studies examining the effect of ZnO have reported contrasting findings. The objective of this study was to examine the effects of antimicrobial and ZnO usage on AMR on commercial pig farms. Faecal and environmental samples were taken on 10 Irish commercial farms, of which 5 farms regularly used ZnO and antimicrobials (amoxicillin or sulphadiazine-trimethoprim) for the prevention of disease. The other 5 farms did not use ZnO or any other form of prophylaxis. Escherichia coli numbers were quantified from all samples using non-supplemented and supplemented Tryptone Bile X-glucuronide agar. Results In total 351 isolates were phenotypically analysed, and the genomes of 44 AmpC/ESBL-producing E. coli isolates from 4 farms were characterised using whole-genome sequencing. Phenotypic analysis suggested higher numbers of multi-drug resistant (MDR) E. coli isolates on farms using prophylaxis. Furthermore, farms using prophylaxis were associated with higher numbers of isolates resistant to apramycin, trimethoprim, tetracycline, streptomycin, and chloramphenicol, while resistance to ciprofloxacin was more associated with farms not using any prophylaxis. Thirty-four of the 44 AmpC/ESBL-producing E. coli strains harboured the blaCTX-M-1 resistance gene and were multi drug resistant (MDR). Moreover, network analysis of plasmids and analysis of integrons showed that antimicrobial and biocide resistance genes were frequently co-located on mobile genetic elements, indicating the possibility for co-selection during antimicrobial or biocide usage as a contributor to AMR occurrence and persistence on farms. Conclusions The results of this study showed evidence that antimicrobial and ZnO treatment of pigs post-weaning can favour the selection and development of AMR and MDR E. coli. Co-location of resistance genes on mobile genetic elements was observed. This study demonstrated the usefulness of phenotypic and genotypic detection of antimicrobial resistance by combining sequencing and microbiological methods.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3