CRISPR-Cas9 mediated phage therapy as an alternative to antibiotics

Author:

Balcha Fikre Birhanu,Neja Sultan AbdaORCID

Abstract

AbstractInappropriate use of antibiotics is globally creating public health hazards associated with antibiotic resistance. Bacteria often acquire antibiotic resistance by altering their genes through mutation or acquisition of plasmid-encoding resistance genes. To treat drug-resistant strains of bacteria, the recently developed CRISPR-Cas9 system might be an alternative molecular tool to conventional antibiotics. It disables antibiotic-resistance genes (plasmids) or deactivates bacterial virulence factors and sensitizes drug-resistant bacteria through site-specific cleavage of crucial domains of their genome. This molecular tool uses phages as vehicles for CRISPR-cas9 delivery into bacteria. Since phages are species-specific and natural predators of bacteria, they are capable of easily injecting their DNA to target bacteria. The CRISPR system is packaged into phagemid vectors, in such a way that the bacteria containing the antibiotic-resistance plasmid sequence or that containing specific DNA sequences were made to be targeted. Upon CRISPR delivery, Cas9 is programmed to recognize target sequences through the guide RNA thereby causing double-strand cleavage of targeted bacterial DNA or loss of drug resistance plasmid, which results in cell death. Remarkably, the safety and efficacy of this newly developed biotechnology tool and the biocontrol product need to be further refined for its usage in clinical translation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3