Author:
Kim Soo Chan,Kim Joo Yeon,Lee Hwan Nyeong,Lee Hwan Ho,Kwon Jae Hwan,Kim Nam beom,Kim Mi Joo,Hwang Jong Hyun,Han Gyu Cheol
Abstract
Abstract
Background
Locomotion involves an integration of vision, proprioception, and vestibular information. The parieto-insular vestibular cortex is known to affect the supra-spinal rhythm generators, and the vestibular system regulates anti- gravity muscle tone of the lower leg in the same side to maintain an upright posture through the extra-pyramidal track. To demonstrate the relationship between locomotion and vestibular function, we evaluated the differences in gait patterns between vestibular neuritis (VN) patients and normal subjects using a gyroscope sensor and long-way walking protocol.
Methods
Gyroscope sensors were attached to both shanks of healthy controls (n=10) and age-matched VN patients (n = 10). We then asked the participants to walk 88.8 m along a corridor. Through the summation of gait cycle data, we measured gait frequency (Hz), normalized angular velocity (NAV) of each axis for legs, maximum and minimum NAV, up-slope and down-slope of NAV in swing phase, stride-swing-stance time (s), and stance to stride ratio (%).
Results
The most dominant walking frequency in the VN group was not different compared to normal control. The NAVs of z-axis (pitch motion) were significantly larger than the others (x-, y-axis) and the values in VN patients tended to decrease in both legs and the difference of NAV between both group was significant in the ipsi- lesion side in the VN group only (p=0.03). Additionally, the gait velocity of these individuals was decreased relatively to controls (1.11 ± 0.120 and 0.84 ± 0.061 m/s in control and VN group respectively, p<0.01), which seems to be related to the significantly increased stance and stride time of the ipsi- lesion side. Moreover, in the VN group, the maximum NAV of the lesion side was less, and the minimum one was higher than control group. Furthermore, the down-slope and up-slope of NAV decreased on the impaired side.
Conclusion
The walking pattern of VN patients was highly phase-dependent, and NAV of pitch motion was significantly decreased in the ipsi- lesion side. The change of gait rhythm, stance and stride time, and maximum/minimum NAV of the ipsi- lesion side were characteristics of individuals with VN.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献