A deep learning-based automated algorithm for labeling coronary arteries in computed tomography angiography images

Author:

Ren Pengling,He Yi,Guo Ning,Luo Nan,Li Fang,Wang Zhenchang,Yang Zhenghan

Abstract

Abstract Objective Using two three-dimensional U-Net architectures for myocardium structure extraction and a distance transformation algorithm specifically for the left circumflex artery, we have designed a fully automated algorithm for coronary artery labeling in coronary computed tomography angiography (CCTA) images. Methods In this retrospective analysis, a cohort of 157 patients who had undergone coronary computed tomography angiography (CCTA) was included. An automated coronary artery labeling algorithm was developed using a distance transformation approach to delineate the anatomical segments along the centerlines extracted from the CCTA images. A total of 16 segments were successfully identified and labeled. The algorithm’s outcomes were recorded and reviewed by three experts, and the performance of segment detection and labeling was assessed. Additionally, the level of agreement in manually labeled segments between two experts was quantified. Results When comparing the labels generated by the experts with those produced by the algorithm, it was necessary to modify or eliminate 117 labels (5.4%) out of 2180 segments assigned by the algorithm. The overall accuracy for label presence was 96.2%, with an average overlap of 94.0% between the expert reference and algorithm-generated labels. Furthermore, the average agreement rate between the two experts stood at 95.0%. Conclusions Based on the labels of the clinical experts, the proposed deep learning algorithm exhibits high accuracy for automatic labeling. Therefore, our proposed method exhibits promising results for the automatic labeling of the coronary arteries and will alleviate the burden on radiologists in the near future.

Funder

Beijing Scholar

National Key Research and Development Program of China

Beijing Municipal Commission of Science and Technology

Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference22 articles.

1. Arbab-Zadeh A. The challenge of effectively reporting coronary angiography results from computed tomography. JACC Cardiovasc Imaging. 2018;11:90–3.

2. Leipsic J, Abbara S, Achenbach S, Cury RC, Earls JP, Mancini GBJ, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8:342–58.

3. Wu FZ, Wu MT. 2014 SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2015;9:e3.

4. Sohrabi B, Separham A, Madadi R, Toufan M, Mohammadi N, Aslanabadi N, et al. Difference between Outcome of Left Circumflex Artery and right coronary artery related Acute Inferior Wall Myocardial Infarction in patients undergoing adjunctive angioplasty. After Fibrinolysis. 2014;6:101–4.

5. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular computed Tomography. Guidelines Comm. 2014;8:342–58.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3