Confidence-based laboratory test reduction recommendation algorithm

Author:

Huang Tongtong,Li Linda T.,Bernstam Elmer V.,Jiang Xiaoqian

Abstract

Abstract Background We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients admitted to the hospital, which can help reduce health risks and healthcare costs. Methods We collected internal patient data from a teaching hospital in Houston and external patient data from the MIMIC III database. The study used a conservative definition of unnecessary laboratory tests, which was defined as stable (i.e., stability) and below the lower normal bound (i.e., normality). Considering that machine learning models may yield less reliable results when trained on noisy inputs containing low-quality information, we estimated prediction confidence to assess the reliability of predicted outcomes. We adopted a “select and predict” design philosophy to maximize prediction performance by selectively considering samples with high prediction confidence for recommendations. Our model accommodated irregularly sampled observational data to make full use of variable correlations (i.e., with other laboratory test values) and temporal dependencies (i.e., previous laboratory tests performed within the same encounter) in selecting candidates for training and prediction. Results The proposed model demonstrated remarkable Hgb prediction performance, achieving a normality AUC of 95.89% and a Hgb stability AUC of 95.94%, while recommending a reduction of 9.91% of Hgb tests that were deemed unnecessary. Additionally, the model could generalize well to external patients admitted to another hospital. Conclusions This study introduces a novel deep learning model with the potential to significantly reduce healthcare costs and improve patient outcomes by identifying unnecessary laboratory tests for hospitalized patients.

Funder

KL2 Mentored Career Development Award

Cancer Prevention and Research Institute of Texas

National Center for Advancing Translational Sciences

Reynolds and Reynolds Professorship in Clinical Informatics

Christopher Sarofim Family Professorship

UT Stars award

UTHealth startup

National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3