Development and validation of ‘Patient Optimizer’ (POP) algorithms for predicting surgical risk with machine learning

Author:

Kowadlo Gideon,Mittelberg Yoel,Ghomlaghi Milad,Stiglitz Daniel K.,Kishore Kartik,Guha Ranjan,Nazareth Justin,Weinberg Laurence

Abstract

Abstract Background Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing the risk of perioperative complications, length of hospital stay, readmission and mortality. Further, it can facilitate collaborative decision-making and operational planning. Objective To develop effective pre-operative risk assessment algorithms (referred to as Patient Optimizer or POP) using Machine Learning (ML) that predict the development of post-operative complications and provide pilot data to inform the design of a larger prospective study. Methods After institutional ethics approval, we developed a base model that encapsulates the standard manual approach of combining patient-risk and procedure-risk. In an automated process, additional variables were included and tested with 10-fold cross-validation, and the best performing features were selected. The models were evaluated and confidence intervals calculated using bootstrapping. Clinical expertise was used to restrict the cardinality of categorical variables (e.g. pathology results) by including the most clinically relevant values. The models were created with logistic regression (LR) and extreme gradient-boosted trees using XGBoost (Chen and Guestrin, 2016). We evaluated performance using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Data was obtained from a metropolitan university teaching hospital from January 2015 to July 2020. Data collection was restricted to adult patients undergoing elective surgery. Results A total of 11,475 adult admissions were included. The performance of XGBoost and LR was very similar across endpoints and metrics. For predicting the risk of any post-operative complication, kidney failure and length-of-stay (LOS), POP with XGBoost achieved an AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 (0.833, 0.847) respectively and AUPRC of 0.651 (0.632, 0.669), 0.336 (0.282, 0.390) and 0.741 (0.729, 0.753) respectively. For 30-day readmission and in-patient mortality, POP with XGBoost achieved an AUROC (95%CI) of 0.610 (0.587, 0.635) and 0.866 (0.777, 0.943) respectively and AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072) respectively. Conclusion The POP algorithms effectively predicted any post-operative complication, kidney failure and LOS in the sample population. A larger study is justified to improve the algorithm to better predict complications and length of hospital stay. A larger dataset may also improve the prediction of additional specific complications, readmission and mortality.

Funder

Victorian Government

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3