Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2

Author:

Liang Bocheng,Peng Fengfeng,Luo Dandan,Zeng Qing,Wen Huaxuan,Zheng Bowen,Zou Zhiying,An Liting,Wen Huiying,Wen Xin,Liao Yimei,Yuan Ying,Li Shengli

Abstract

Abstract Background Accurate segmentation of critical anatomical structures in fetal four-chamber view images is essential for the early detection of congenital heart defects. Current prenatal screening methods rely on manual measurements, which are time-consuming and prone to inter-observer variability. This study develops an AI-based model using the state-of-the-art nnU-NetV2 architecture for automatic segmentation and measurement of key anatomical structures in fetal four-chamber view images. Methods A dataset, consisting of 1,083 high-quality fetal four-chamber view images, was annotated with 15 critical anatomical labels and divided into training/validation (867 images) and test (216 images) sets. An AI-based model using the nnU-NetV2 architecture was trained on the annotated images and evaluated using the mean Dice coefficient (mDice) and mean intersection over union (mIoU) metrics. The model’s performance in automatically computing the cardiac axis (CAx) and cardiothoracic ratio (CTR) was compared with measurements from sonographers with varying levels of experience. Results The AI-based model achieved a mDice coefficient of 87.11% and an mIoU of 77.68% for the segmentation of critical anatomical structures. The model’s automated CAx and CTR measurements showed strong agreement with those of experienced sonographers, with respective intraclass correlation coefficients (ICCs) of 0.83 and 0.81. Bland–Altman analysis further confirmed the high agreement between the model and experienced sonographers. Conclusion We developed an AI-based model using the nnU-NetV2 architecture for accurate segmentation and automated measurement of critical anatomical structures in fetal four-chamber view images. Our model demonstrated high segmentation accuracy and strong agreement with experienced sonographers in computing clinically relevant parameters. This approach has the potential to improve the efficiency and reliability of prenatal cardiac screening, ultimately contributing to the early detection of congenital heart defects.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Guangdong Yiyang Healthcare Charity Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3