Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT

Author:

Chen Peng,Zhang Meng,Yu Xiaosheng,Li Songpu

Abstract

AbstractBackgroundNamed entity recognition (NER) of electronic medical records is an important task in clinical medical research. Although deep learning combined with pretraining models performs well in recognizing entities in clinical texts, because Chinese electronic medical records have a special text structure and vocabulary distribution, general pretraining models cannot effectively incorporate entities and medical domain knowledge into representation learning; separate deep network models lack the ability to fully extract rich features in complex texts, which negatively affects the named entity recognition of electronic medical records.MethodsTo better represent electronic medical record text, we extract the text’s local features and multilevel sequence interaction information to improve the effectiveness of electronic medical record named entity recognition. This paper proposes a hybrid neural network model based on medical MC-BERT, namely, the MC-BERT + BiLSTM + CNN + MHA + CRF model. First, MC-BERT is used as the word embedding model of the text to obtain the word vector, and then BiLSTM and CNN obtain the feature information of the forward and backward directions of the word vector and the local context to obtain the corresponding feature vector. After merging the two feature vectors, they are sent to multihead self-attention (MHA) to obtain multilevel semantic features, and finally, CRF is used to decode the features and predict the label sequence.ResultsThe experiments show that the F1 values of our proposed hybrid neural network model based on MC-BERT reach 94.22%, 86.47%, and 92.28% on the CCKS-2017, CCKS-2019 and cEHRNER datasets, respectively. Compared with the general-domain BERT-based BiLSTM + CRF, our F1 values increased by 0.89%, 1.65% and 2.63%. Finally, we analyzed the effect of an unbalanced number of entities in the electronic medical records on the results of the NER experiment.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3