Machine learning based efficient prediction of positive cases of waterborne diseases

Author:

Hussain Mushtaq,Cifci Mehmet Akif,Sehar Tayyaba,Nabi Said,Cheikhrouhou Omar,Maqsood Hasaan,Ibrahim Muhammad,Mohammad Fida

Abstract

Abstract Background Water quality has been compromised and endangered by different contaminants due to Pakistan’s rapid population development, which has resulted in a dramatic rise in waterborne infections and afflicted many regions of Pakistan. Because of this, modeling and predicting waterborne diseases has become a hot topic for researchers and is very important for controlling waterborne disease pollution. Methods In our study, first, we collected typhoid and malaria patient data for the years 2017–2020 from Ayub Medical Hospital. The collected data set has seven important input features. In the current study, different ML models were first trained and tested on the current study dataset using the tenfold cross-validation method. Second, we investigated the importance of input features in waterborne disease-positive case detection. The experiment results showed that Random Forest correctly predicted malaria-positive cases 60% of the time and typhoid-positive cases 77% of the time, which is better than other machine-learning models. In this research, we have also investigated the input features that are more important in the prediction and will help analyze positive cases of waterborne disease. The random forest feature selection technique has been used, and experimental results have shown that age, history, and test results play an important role in predicting waterborne disease-positive cases. In the end, we concluded that this interesting study could help health departments in different areas reduce the number of people who get sick from the water.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disease Outbreak /Epidemic in Public Health Sector;2024 6th International Conference on Computing and Informatics (ICCI);2024-03-06

2. Modeling of Improved Sine Cosine Algorithm with Optimal Deep Learning-Enabled Security Solution;Electronics;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3