Autonomous fetal morphology scan: deep learning + clustering merger – the second pair of eyes behind the doctor

Author:

Belciug Smaranda

Abstract

AbstractThe main cause of fetal death, of infant morbidity or mortality during childhood years is attributed to congenital anomalies. They can be detected through a fetal morphology scan. An experienced sonographer (with more than 2000 performed scans) has the detection rate of congenital anomalies around 52%. The rates go down in the case of a junior sonographer, that has the detection rate of 32.5%. One viable solution to improve these performances is to use Artificial Intelligence. The first step in a fetal morphology scan is represented by the differentiation process between the view planes of the fetus, followed by a segmentation of the internal organs in each view plane. This study presents an Artificial Intelligence empowered decision support system that can label anatomical organs using a merger between deep learning and clustering techniques, followed by an organ segmentation with YOLO8. Our framework was tested on a fetal morphology image dataset that regards the fetal abdomen. The experimental results show that the system can correctly label the view plane and the corresponding organs on real-time ultrasound movies.Trial registrationThe study is registered under the name “Pattern recognition and Anomaly Detection in fetal morphology using Deep Learning and Statistical Learning (PARADISE)”, project number 101PCE/2022, project code PN-III-P4-PCE-2021–0057. Trial registration: ClinicalTrials.gov, unique identifying number NCT05738954, date of registration 02.11.2023.

Funder

Ministerul Cercetării, Inovării şi Digitalizării

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3