How to study a predator that only eats a few meals a year: high-frequency accelerometry to quantify feeding behaviours of rattlesnakes (Crotalus spp.)

Author:

Hanscom Ryan J.,DeSantis Dominic L.,Hill Jessica L.,Marbach Tyler,Sukumaran Jeet,Tipton Anna F.,Thompson Morgan L.,Higham Timothy E.,Clark Rulon W.

Abstract

Abstract Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accelerometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of viperid snakes (Crotalus spp.) and assess the transferability of classification models across those species. Results We used open-source software to create species-specific models that classified locomotion, stillness, predatory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost, reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low transferability in our cross-species comparison. Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an ‘end-to-end’ template for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerometry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity, and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat), general models could potentially be developed that have higher transferability.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3