Nanobody-based CAR-T cells for cancer immunotherapy

Author:

Safarzadeh Kozani Pouya,Naseri Abdolhossein,Mirarefin Seyed Mohamad Javad,Salem Faeze,Nikbakht Mojtaba,Evazi Bakhshi Sahar,Safarzadeh Kozani PooriaORCID

Abstract

AbstractChimeric antigen receptor T-cell (CAR-T) therapy is the result of combining genetic engineering-based cancer immunotherapy with adoptive cell therapy (ACT). CAR-T therapy has been successful in treating various types of hematological cancers. CARs are receptors made of an extracellular domain, a membrane-spanning domain, and an intracellular domain. The extracellular domain of CARs harbors an antigen-targeting domain responsible for recognizing and binding cell surface-expressed target antigens. Conventionally, the single-chain fragment variable (scFv) of a monoclonal antibody (mAb) is used as the antigen-targeting domain of CARs. However, of late, researchers have exploited nanobodies for this aim based on numerous rationales including the small size of nanobodies, their stability, specificity, and high affinity, and their easy and feasible development process. Many findings have confirmed that nanobody-based CAR-Ts can be as functional as scFv-based CAR-Ts in preclinical and clinical settings. In this review, we discuss the advantages and disadvantages of scFvs and nanobodies in regards to their application as the targeting domain of CARs. Ultimately, we discuss various CAR target antigens which have been targeted using nanobody-based CAR-T cells for the treatment of different types of malignancies.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3