Dynamic structural neuroplasticity during and after epileptogenesis in a pilocarpine rat model of epilepsy

Author:

Heysieattalab Soomaayeh,Sadeghi Leila

Abstract

Abstract Background The role of neuroplasticity in epilepsy has been widely studied in experimental models and human brain samples. However, the results are contradictory and it remains unclear if neuroplasticity is more related to the cause or the consequence of epileptic seizures. Clarifying this issue can provide insights into epilepsy therapies that target the disease mechanism and etiology rather than symptoms. Therefore, this study was aimed to investigate the dynamic changes of structural plasticity in a pilocarpine rat model of epilepsy. Methods A single acute dose of pilocarpine (380 mg/kg, i.p.) was injected into adult male Wistar rats to induce status epilepticus (SE). Animal behavior was monitored for 2 h. Immunohistochemical staining was performed to evaluate neurogenesis in the CA3 and dentate gyrus (DG) regions of hippocampus using biomarkers Ki67 and doublecortin (DCX). The Golgi-Cox method was performed to analyze dendritic length and complexity. All experiments were performed in control rats (baseline), at 24 h after SE, on day 20 after SE (latent phase), after the first and 10th spontaneous recurrent seizures (SRS; chronic phase), and in non-epileptic rats (which did not manifest SRS 36 days after pilocarpine injection). Results SE significantly increased the number of Ki67 and DCX-positive cells, suggesting neurogenesis during the latent phase. The dendritic complexity monitoring showed that plasticity was altered differently during epilepsy and epileptogenesis, suggesting that the two processes are completely separate at molecular and physiological levels. The numbers of spines and mushroom-type spines were increased in the latent phase. However, the dendritogenesis and spine numbers did not increase in rats that were unable to manifest spontaneous seizures after SE. Conclusion All parameters of structural plasticity that increase during epileptogenesis, are reduced by spontaneous seizure occurrence, which suggests that the development of epilepsy involves maladaptive plastic changes. Therefore, the maladaptive plasticity biomarkers can be used to predict epilepsy before development of SRS in the cases of serious brain injury.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3