Deciphering the pharmacological mechanisms of Fraxini Cortex for ulcerative colitis treatment based on network pharmacology and in vivo studies

Author:

Wang Tianming,Su Xuyang,Peng Jing,Tan Xiaofen,Yang Guangshan,Zhang Tengyue,Chen Feng,Wang Changzhong,Ma Kelong

Abstract

Abstract Background Ulcerative colitis (UC) is a common type of inflammatory bowel disease. Due to the elusive pathogenesis, safe and effective treatment strategies are still lacking. Fraxini Cortex (FC) has been widely used as a medicinal herb to treat some diseases. However, the pharmacological mechanisms of FC for UC treatment are still unclear. Methods An integrated platform combining network pharmacology and experimental studies was introduced to decipher the mechanism of FC against UC. The active compounds, therapeutic targets, and the molecular mechanism of action were acquired by network pharmacology, and the interaction between the compounds and target proteins were verified by molecular docking. Dextran sulfate sodium (DSS)-induced colitis model was employed to assess the therapeutic effect of FC on UC, and validate the molecular mechanisms of action predicted by network pharmacology. Results A total of 20 bioactive compounds were retrieved, and 115 targets were predicted by using the online databases. Ursolic acid, fraxetin, beta-sitosterol, and esculetin were identified as the main active compounds of FC against UC. PPI network analysis identified 28 FC-UC hub genes that were mainly enriched in the IL-17 signaling pathway, the TNF signaling pathway, and pathways in cancer. Molecular docking confirmed that the active compounds had high binding affinities to the predicted target proteins. GEO dataset analysis showed that these target genes were highly expressed in the UC clinical samples compared with that in the healthy controls. Experimental studies showed that FC alleviated DSS-induced colitis symptoms, reduced inflammatory cytokines release, and suppressed the expression levels of IL1β, COX2, MMP3, IL-17 and RORγt in colon tissues. Conclusion FC exhibits anti-UC properties through regulating multi-targets and multi-pathways with multi-components. In vivo results demonstrated that FC alleviated DSS-induced colitis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province of China

Outstanding Youth Project of Anhui Institution of Higher Education

Natural Science Foundation of Anhui Institution of Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3