Characterization of the human skin resistome and identification of two microbiota cutotypes

Author:

Li Zhiming,Xia Jingjing,Jiang Liuyiqi,Tan Yimei,An Yitai,Zhu Xingyu,Ruan Jie,Chen Zhihua,Zhen Hefu,Ma Yanyun,Jie Zhuye,Xiao Liang,Yang Huanming,Wang Jian,Kristiansen Karsten,Xu Xun,Jin Li,Nie Chao,Krutmann Jean,Liu Xiao,Wang JiucunORCID

Abstract

Abstract Background The human skin microbiota is considered to be essential for skin homeostasis and barrier function. Comprehensive analyses of its function would substantially benefit from a catalog of reference genes derived from metagenomic sequencing. The existing catalog for the human skin microbiome is based on samples from limited individuals from a single cohort on reference genomes, which limits the coverage of global skin microbiome diversity. Results In the present study, we have used shotgun metagenomics to newly sequence 822 skin samples from Han Chinese, which were subsequently combined with 538 previously sequenced North American samples to construct an integrated Human Skin Microbial Gene Catalog (iHSMGC). The iHSMGC comprised 10,930,638 genes with the detection of 4,879,024 new genes. Characterization of the human skin resistome based on iHSMGC confirmed that skin commensals, such as Staphylococcus spp, are an important reservoir of antibiotic resistance genes (ARGs). Further analyses of skin microbial ARGs detected microbe-specific and skin site-specific ARG signatures. Of note, the abundance of ARGs was significantly higher in Chinese than Americans, while multidrug-resistant bacteria (“superbugs”) existed on the skin of both Americans and Chinese. A detailed analysis of microbial signatures identified Moraxella osloensis as a species specific for Chinese skin. Importantly, Moraxella osloensis proved to be a signature species for one of two robust patterns of microbial networks present on Chinese skin, with Cutibacterium acnes indicating the second one. Each of such “cutotypes” was associated with distinct patterns of data-driven marker genes, functional modules, and host skin properties. The two cutotypes markedly differed in functional modules related to their metabolic characteristics, indicating that host-dependent trophic chains might underlie their development. Conclusions The development of the iHSMGC will facilitate further studies on the human skin microbiome. In the present study, it was used to further characterize the human skin resistome. It also allowed to discover the existence of two cutotypes on the human skin. The latter finding will contribute to a better understanding of the interpersonal complexity of the skin microbiome.

Funder

Shanghai Municipal Science and Technology Major Project

National Natural Science Foundation of China

National Key Research and Development Program of China

Development and Reform Commission of Shenzhen Municipality

CAMS Innovation Fund for Medical Science

111 Project

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3