Intestinal microbiome-mediated resistance against vibriosis for Cynoglossus semilaevis

Author:

Zhou Qian,Zhu Xue,Li Yangzhen,Yang Pengshuo,Wang Shengpeng,Ning Kang,Chen Songlin

Abstract

Abstract Background Infectious diseases have caused huge economic loss and food security issues in fish aquaculture. Current management and breeding strategies heavily rely on the knowledge of regulative mechanisms underlying disease resistance. Though the intestinal microbial community was linked with disease infection, there is little knowledge about the roles of intestinal microbes in fish disease resistance. Cynoglossus semilaevis is an economically important and widely cultivated flatfish species in China. However, it suffers from outbreaks of vibriosis, which results in huge mortalities and economic loss. Results Here, we used C. semilaevis as a research model to investigate the host-microbiome interactions in regulating vibriosis resistance. The resistance to vibriosis was reflected in intestinal microbiome on both taxonomic and functional levels. Such differences also influenced the host gene expressions in the resistant family. Moreover, the intestinal microbiome might control the host immunological homeostasis and inflammation to enhance vibriosis resistance through the microbe-intestine-immunity axis. For example, Phaeobacter regulated its hdhA gene and host cyp27a1 gene up-expressed in bile acid biosynthesis pathways, but regulated its trxA gene and host akt gene down-expressed in proinflammatory cytokines biosynthesis pathways, to reduce inflammation and resist disease infection in the resistant family. Furthermore, the combination of intestinal microbes and host genes as biomarkers could accurately differentiate resistant family from susceptible family. Conclusion Our study uncovered the regulatory patterns of the microbe-intestine-immunity axis that may contribute to vibriosis resistance in C. semilaevis. These findings could facilitate the disease control and selective breeding of superior germplasm with high disease resistance in fish aquaculture.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3