Using the collaborative cross to identify the role of host genetics in defining the murine gut microbiome

Author:

Nagarajan Aravindh,Scoggin Kristin,Gupta Jyotsana,Threadgill David W.,Andrews-Polymenis Helene L.

Abstract

Abstract Background The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative Cross (CC) mice. CC mice are a panel of mice that are genetically diverse across strains, but genetically identical within a given strain allowing repetition and deeper analysis than is possible with other collections of genetically diverse mice. Results 16S rRNA from the feces of 167 mice from 28 different CC strains was sequenced and analyzed using the Qiime2 pipeline. We observed a large variance in the bacterial composition across CC strains starting at the phylum level. Using bacterial composition data, we identified 17 significant Quantitative Trait Loci (QTL) linked to 14 genera on 9 different mouse chromosomes. Genes within these intervals were analyzed for significant association with pathways and the previously known human GWAS database using Enrichr analysis and Genecards database. Multiple host genes involved in obesity, glucose homeostasis, immunity, neurological diseases, and many other protein-coding genes located in these regions may play roles in determining the composition of the gut microbiota. A subset of these CC mice was infected with Salmonella Typhimurium. Using infection outcome data, an increase in abundance of genus Lachnospiraceae and decrease in genus Parasutterella correlated with positive health outcomes after infection. Machine learning classifiers accurately predicted the CC strain and the infection outcome using pre-infection bacterial composition data from the feces. Conclusion Our study supports the hypothesis that multiple host genes influence the gut microbiome composition and homeostasis, and that certain organisms may influence health outcomes after S. Typhimurium infection.

Funder

Defense Advanced Research Projects Agency

Texas A&M University College of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3