Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems

Author:

Zhu Xiao-Yu,Li Yang,Xue Chun-Xu,Lidbury Ian D. E. A.,Todd Jonathan D.,Lea-Smith David J.,Tian Jiwei,Zhang Xiao-Hua,Liu Jiwen

Abstract

Abstract Background Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. Results Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000–4000 m) and hadal (6000–10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400–10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. Conclusions Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism.

Funder

Biotechnology and Biological Sciences Research Council

Natural Environmental Research Council, UK

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3