Discordant transmission of bacteria and viruses from mothers to babies at birth

Author:

Maqsood Rabia,Rodgers Rachel,Rodriguez Cynthia,Handley Scott A.,Ndao I. Malick,Tarr Phillip I.,Warner Barbara B.,Lim Efrem S.,Holtz Lori R.ORCID

Abstract

Abstract Background The earliest microbial colonizers of the human gut can have life-long consequences for their hosts. Precisely how the neonatal gut bacterial microbiome and virome are initially populated is not well understood. To better understand how the maternal gut microbiome influences acquisition of the infant gut microbiome, we studied the early life bacterial microbiomes and viromes of 28 infant twin pairs and their mothers. Results Infant bacterial and viral communities more closely resemble those of their related co-twin than unrelated infants. We found that 63% of an infant’s bacterial microbiome can be traced to their mother’s gut microbiota. In contrast, only 15% of their viral communities are acquired from their mother. Delivery route did not determine how much of the bacterial microbiome or virome was shared from mother to infant. However, bacteria-bacteriophage interactions were altered by delivery route. Conclusions The maternal gut microbiome significantly influences infant gut microbiome acquisition. Vertical transmission of the bacterial microbiome is substantially higher compared to vertical transmission of the virome. However, the degree of similarity between the maternal and infant gut bacterial microbiome and virome did not vary by delivery route. The greater similarity of the bacterial microbiome and virome between twin pairs than unrelated twins may reflect a shared environmental exposure. Thus, differences of the inter-generation transmissibility at birth between the major kingdoms of microbes indicate that the foundation of these microbial communities are shaped by different rules.

Funder

Children's Discovery Institute

March of Dimes Foundation

Doris Duke Charitable Foundation

National Institute of Diabetes and Digestive and Kidney Diseases

Arizona State University

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3