Multi-omics reveals that alkaline mineral water improves the respiratory health and growth performance of transported calves

Author:

Qi Jiancheng,Gan Linli,Huang Fangyuan,Xie Yue,Guo Hongrui,Cui Hengmin,Deng Junliang,Gou Liping,Cai Dongjie,Pan Chunhui,Lu Xia,Shah Ali Mujtaba,Fang Jing,Zuo Zhicai

Abstract

Abstract Background Long-distance transportation, a frequent practice in the cattle industry, stresses calves and results in morbidity, mortality, and growth suppression, leading to welfare concerns and economic losses. Alkaline mineral water (AMW) is an electrolyte additive containing multiple mineral elements and shows stress-mitigating effects on humans and bovines. Results Here, we monitored the respiratory health status and growth performance of 60 Simmental calves subjected to 30 hours of road transportation using a clinical scoring system. Within the three days of commingling before the transportation and 30 days after the transportation, calves in the AMW group (n = 30) were supplied with AMW, while calves in the Control group (n = 29) were not. On three specific days, namely the day before transportation (day -3), the 30th day (day 30), and the 60th day (day 60) after transportation, sets of venous blood, serum, and nasopharyngeal swab samples were collected from 20 calves (10 from each group) for routine blood testing, whole blood transcriptomic sequencing, serology detection, serum untargeted metabolic sequencing, and 16S rRNA gene sequencing. The field data showed that calves in the AMW group displayed lower rectal temperatures (38.967 ℃ vs. 39.022 ℃; p = 0.004), respiratory scores (0.079 vs. 0.144; p < 0.001), appetite scores (0.024 vs. 0.055; p < 0.001), ocular and ear scores (0.185 vs. 0.338; p < 0.001), nasal discharge scores (0.143 vs. 0.241; p < 0.001), and higher body weight gains (30.870 kg vs. 7.552 kg; p < 0.001). The outcomes of laboratory and high throughput sequencing data revealed that the calves in the AMW group demonstrated higher cellular and humoral immunities, antioxidant capacities, lower inflammatory levels, and intestinal absorption and lipogenesis on days -3 and 60. The nasopharynx 16S rRNA gene microbiome analysis revealed the different composition and structure of the nasopharyngeal microflora in the two groups of calves on day 30. Joint analysis of multi-omics revealed that on days -3 and 30, bile secretion was a shared pathway enriched by differentially expressed genes and metabolites, and there were strong correlations between the differentially expressed metabolites and the main genera in the nasopharynx. Conclusions These results suggest that AMW supplementation enhances peripheral immunity, nutrition absorption, and metabolic processes, subsequently affecting the nasopharyngeal microbiota and improving the respiratory health and growth performance of transported calves. This investigation provided a practical approach to mitigate transportation stress and explored its underlying mechanisms, which are beneficial for the development of the livestock industry.

Funder

China Agriculture Research System of MOF and MARA

National Key R&D Program of China

Beijing Jnnail Biological Technology Limited Company

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3