Author:
Hussain Salik,Thomassen Leen CJ,Ferecatu Ioana,Borot Marie-Caroline,Andreau Karine,Martens Johan A,Fleury Jocelyne,Baeza-Squiban Armelle,Marano Francelyne,Boland Sonja
Abstract
Abstract
Background
Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways.
Results
Detailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2) production was only involved in apoptosis induction by CB NPs.
Conclusions
Both CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis), the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference66 articles.
1. Warheit DB, Sayes CM, Reed KL, Swain KA: Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 2008, 120: 35–42. 10.1016/j.pharmthera.2008.07.001
2. Frampton MW, Utell MJ, Zareba W, Oberdorster G, Cox C, Huang LS, Morrow PE, Lee FE, Chalupa D, Frasier LM, Speers DM, Stewart J: Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 2004, 1–47.
3. Oberdorster G: Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001, 74: 1–8. 10.1007/s004200000185
4. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B: Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001, 164: 1665–1668.
5. Simeonova PP, Erdely A: Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers. Inhal Toxicol 2009, 21(Suppl 1):68–73. 10.1080/08958370902942566
Cited by
205 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献