Author:
Pasricha Puneet,Selvamuthu Dharmaraja,D’Amico Guglielmo,Manca Raimondo
Abstract
AbstractThis article presents a semi-Markov process based approach to optimally select a portfolio consisting of credit risky bonds. The criteria to optimize the credit portfolio is based on l∞-norm risk measure and the proposed optimization model is formulated as a linear programming problem. The input parameters to the optimization model are rate of returns of bonds which are obtained using credit ratings assuming that credit ratings of bonds follow a semi-Markov process. Modeling credit ratings by semi-Markov processes has several advantages over Markov chain models, i.e., it addresses the ageing effect present in the credit rating dynamics. The transition probability matrices generated by semi-Markov process and initial credit ratings are used to generate rate of returns of bonds. The empirical performance of the proposed model is analyzed using the real data. Further, comparison of the proposed approach with the Markov chain approach is performed by obtaining the efficient frontiers for the two models.
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Finance
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献