Author:
Azeez Dhifaf,Ali Mohd Alauddin Mohd,Gan Kok Beng,Saiboon Ismail
Abstract
Abstract
Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient’s emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician’s burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in term of generalization. It was therefore chosen as the technique to develop the primary triage prediction model. This primary triage model will be combined with the secondary triage prediction model to produce the final triage category as a tool to assist the medical officer in the emergency department.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Akay M: Nonlinear Biomedical Signal Processing: Fuzzy Logic, Neural Networks, and New Algorithms. New York: Wiley-IEEE Press; 2000.
2. Andriulli A, Grossi E, Buscema M, Festa V, Intraligi NM, Dominici P, Cerutti R, Perri F: Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia. Dig Liver Dis 2003, 35(4):222-231. 10.1016/s1590-8658(03)00057-4 10.1016/S1590-8658(03)00057-4
3. Asiltürk İ, Çunkaş M: Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 2011, 38(5):5826-5832. 10.1016/j.eswa.2010.11.041 10.1016/j.eswa.2010.11.041
4. Benmiloud T: Improved adaptive neuro-fuzzy inference system. Neural Comput Appl 2011, 1-8. 10.1007/s00521-011-0607-5
5. Bodyanskiy Y, Dolotov A: Methods and Instruments of Artificial Intelligence. Rzeszow-Sofia, Bulgaria: ITHEA; 2010:17-24.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献