Partial loss of Smad signaling during in vitroprogression of HPV16-immortalized human keratinocytes

Author:

Altomare Diego,Velidandla Rupa,Pirisi Lucia,Creek Kim E

Abstract

Abstract Background Disruption of the transforming growth factor-beta (TGF-β) signaling pathway is observed in many cancers, including cervical cancer, resulting in TGF-β resistance. While normal human keratinocytes (HKc) and human papillomavirus type 16-immortalized HKc (HKc/HPV16) are sensitive to the growth inhibitory effects of TGF-β, HKc/HPV16 develop resistance to TGF-β1 as they progress in vitro to a differentiation resistant phenotype (HKc/DR). The loss of sensitivity to the antiproliferative effects of TGF-β1 in HKc/DR is due, at least partially, to decreased expression of the TGF-β receptor type I. In the present study, we explored in detail whether alterations in Smad protein levels, Smad phosphorylation, or nuclear localization of Smads in response to TGF-β could contribute to the development of TGF-β resistance during in vitro progression of HKc/HPV16, and whether TGF-β induction of a Smad-responsive reporter gene was altered in HKc/DR. Methods Western blot analysis was used to assess Smad protein levels. In order to study Smad nuclear localization we performed indirect immunofluorescence. In addition, we determined Smad-mediated TGF-β signaling using a luciferase reporter construct. Results We did not find a decrease in protein levels of Smad2, Smad3 or Smad4, or an increase in the inhibitory Smad7 that paralleled the loss of sensitivity to the growth inhibitory effects of TGF-β1 observed in HKc/DR. However, we found diminished Smad2 phosphorylation, and delayed nuclear Smad3 localization in response to TGF-β1 in HKc/DR, compared to normal HKc and TGF-β sensitive HKc/HPV16. In addition, we determined that TGF-β1 induction of a Smad responsive promoter is reduced by about 50% in HKc/DR, compared to HKc/HPV16. Conclusions These results demonstrate that alterations in Smad protein levels are not associated with the loss of response to the antiproliferative effects of TGF-β in HKc/DR, but that diminished and delayed Smad phosphorylation and nuclear localization, and decreased Smad signaling occur in response to TGF-β in HKc/DR.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3