Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model

Author:

Bian Xuelian,Sun Qi,Wang Mi,Dong Hanyun,Dai Xiaoxiao,Zhang Liyuan,Fan Guohua,Chen Guangqiang

Abstract

Abstract Background To investigate the value of a nomogram model based on the combination of clinical-CT features and multiphasic enhanced CT radiomics for the preoperative prediction of the microsatellite instability (MSI) status in colorectal cancer (CRC) patients. Methods A total of 347 patients with a pathological diagnosis of colorectal adenocarcinoma, including 276 microsatellite stabilized (MSS) patients and 71 MSI patients (243 training and 104 testing), were included. Univariate and multivariate regression analyses were used to identify the clinical-CT features of CRC patients linked with MSI status to build a clinical model. Radiomics features were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Different radiomics models for the single phase and multiphase (three-phase combination) were developed to determine the optimal phase. A nomogram model that combines clinical-CT features and the optimal phasic radscore was also created. Results Platelet (PLT), systemic immune inflammation index (SII), tumour location, enhancement pattern, and AP contrast ratio (ACR) were independent predictors of MSI status in CRC patients. Among the AP, VP, DP, and three-phase combination models, the three-phase combination model was selected as the best radiomics model. The best MSI prediction efficacy was demonstrated by the nomogram model built from the combination of clinical-CT features and the three-phase combination model, with AUCs of 0.894 and 0.839 in the training and testing datasets, respectively. Conclusion The nomogram model based on the combination of clinical-CT features and three-phase combination radiomics features can be used as an auxiliary tool for the preoperative prediction of the MSI status in CRC patients.

Funder

Key R&D plan of Jiangsu Province

special project of “Technological Innovation” project of CNNC Medical Industry Co. Ltd

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3