Grayscale medical image segmentation method based on 2D&3D object detection with deep learning

Author:

Ge Yunfei,Zhang Qing,Sun Yuantao,Shen Yidong,Wang Xijiong

Abstract

AbstractBackgroundGrayscale medical image segmentation is the key step in clinical computer-aided diagnosis. Model-driven and data-driven image segmentation methods are widely used for their less computational complexity and more accurate feature extraction. However, model-driven methods like thresholding usually suffer from wrong segmentation and noises regions because different grayscale images have distinct intensity distribution property thus pre-processing is always demanded. While data-driven methods with deep learning like encoder-decoder networks always are always accompanied by complex architectures which require amounts of training data.MethodsCombining thresholding method and deep learning, this paper presents a novel method by using 2D&3D object detection technologies. First, interest regions contain segmented object are determined with fine-tuning 2D object detection network. Then, pixels in cropped images are turned as point cloud according to their positions and grayscale values. Finally, 3D object detection network is applied to obtain bounding boxes with target points and boxes’ bottoms and tops represent thresholding values for segmentation. After projecting to 2D images, these target points could composite the segmented object.ResultsThree groups of grayscale medical images are used to evaluate the proposed image segmentation method. We obtain the IoU (DSC) scores of 0.92 (0.96), 0.88 (0.94) and 0.94 (0.94) for segmentation accuracy on different datasets respectively. Also, compared with five state of the arts and clinically performed well models, our method achieves higher scores and better performance.ConclusionsThe prominent segmentation results demonstrate that the built method based on 2D&3D object detection with deep learning is workable and promising for segmentation task of grayscale medical images.

Funder

Tongji University Sheng Feiyun College Student Science and Technology Innovation Practice Found

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3