Author:
Wang Jiexiao,Wang Jialiang,Huang Xiang,Zhou Yanfei,Qi Jian,Sun Xiaojun,Nie Jinfu,Hu Zongtao,Wang Shujie,Hong Bo,Wang Hongzhi
Abstract
Abstract
Background
Tumor mutational burden (TMB) is one of the most significant predictive biomarkers of immunotherapy efficacy in non-small cell lung cancer (NSCLC). Radiomics allows high-throughput extraction and analysis of advanced and quantitative medical imaging features. This study develops and validates a radiomic model for predicting TMB level and the response to immunotherapy based on CT features in NSCLC.
Method
Pre-operative chest CT images of 127 patients with NSCLC were retrospectively studied. The 3D-Slicer software was used to outline the region of interest and extract features from the CT images. Radiomics prediction model was constructed by LASSO and multiple logistic regression in a training dataset. The model was validated by receiver operating characteristic (ROC) curves and calibration curves using external datasets. Decision curve analysis was used to assess the value of the model for clinical application.
Results
A total of 1037 radiomic features were extracted from the CT images of NSCLC patients from TCGA. LASSO regression selected three radiomics features (Flatness, Autocorrelation and Minimum), which were associated with TMB level in NSCLC. A TMB prediction model consisting of 3 radiomic features was constructed by multiple logistic regression. The area under the curve (AUC) value in the TCGA training dataset was 0.816 (95% CI: 0.7109–0.9203) for predicting TMB level in NSCLC. The AUC value in external validation dataset I was 0.775 (95% CI: 0.5528–0.9972) for predicting TMB level in NSCLC, and the AUC value in external validation dataset II was 0.762 (95% CI: 0.5669–0.9569) for predicting the efficacy of immunotherapy in NSCLC.
Conclusion
The model based on CT radiomic features helps to achieve cost effective improvement in TMB classification and precise immunotherapy treatment of NSCLC patients.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献