Author:
Du Weidong,Kang Weipiao,Lai Shixin,Cai Zehong,Chen Yaowen,Zhang Xiaolei,Lin Yu
Abstract
Abstract
Background
As treatment strategies differ according to endotype, rhinologists must accurately determine the endotype in patients affected by chronic rhinosinusitis with nasal polyps (CRSwNP) for the appropriate management. In this study, we aim to construct a novel deep learning model using paranasal sinus computed tomography (CT) to predict the endotype in patients with CRSwNP.
Methods
We included patients diagnosed with CRSwNP between January 1, 2020, and April 31, 2023. The endotype of patients with CRSwNP in this study was classified as eosinophilic or non-eosinophilic. Sinus CT images (29,993 images) were retrospectively collected, including the axial, coronal, and sagittal planes, and randomly divided into training, validation, and testing sets. A residual network-18 was used to construct the deep learning model based on these images. Loss functions, accuracy functions, confusion matrices, and receiver operating characteristic curves were used to assess the predictive performance of the model. Gradient-weighted class activation mapping was performed to visualize and interpret the operating principles of the model.
Results
Among 251 included patients, 86 and 165 had eosinophilic or non-eosinophilic CRSwNP, respectively. The median (interquartile range) patient age was 49 years (37–58 years), and 153 (61.0%) were male. The deep learning model showed good discriminative performance in the training and validation sets, with areas under the curves of 0.993 and 0.966, respectively. To confirm the model generalizability, the receiver operating characteristic curve in the testing set showed good discriminative performance, with an area under the curve of 0.963. The Kappa scores of the confusion matrices in the training, validation, and testing sets were 0.985, 0.928, and 0.922, respectively. Finally, the constructed deep learning model was used to predict the endotype of all patients, resulting in an area under the curve of 0.962.
Conclusions
The deep learning model developed in this study may provide a novel noninvasive method for rhinologists to evaluate endotypes in patients with CRSwNP and help develop precise treatment strategies.
Funder
Shantou Science and Technology Project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献