A deep learning framework for automated detection and quantitative assessment of liver trauma

Author:

Farzaneh NegarORCID,Stein Erica B.,Soroushmehr Reza,Gryak Jonathan,Najarian Kayvan

Abstract

AbstractBackgroundBoth early detection and severity assessment of liver trauma are critical for optimal triage and management of trauma patients. Current trauma protocols utilize computed tomography (CT) assessment of injuries in a subjective and qualitative (v.s. quantitative) fashion, shortcomings which could both be addressed by automated computer-aided systems that are capable of generating real-time reproducible and quantitative information. This study outlines an end-to-end pipeline to calculate the percentage of the liver parenchyma disrupted by trauma, an important component of the American Association for the Surgery of Trauma (AAST) liver injury scale, the primary tool to assess liver trauma severity at CT.MethodsThis framework comprises deep convolutional neural networks that first generate initial masks of both liver parenchyma (including normal and affected liver) and regions affected by trauma using three dimensional contrast-enhanced CT scans. Next, during the post-processing step, human domain knowledge about the location and intensity distribution of liver trauma is integrated into the model to avoid false positive regions. After generating the liver parenchyma and trauma masks, the corresponding volumes are calculated. Liver parenchymal disruption is then computed as the volume of the liver parenchyma that is disrupted by trauma.ResultsThe proposed model was trained and validated on an internal dataset from the University of Michigan Health System (UMHS) including 77 CT scans (34 with and 43 without liver parenchymal trauma). The Dice/recall/precision coefficients of the proposed segmentation models are 96.13/96.00/96.35% and 51.21/53.20/56.76%, respectively, in segmenting liver parenchyma and liver trauma regions. In volume-based severity analysis, the proposed model yields a linear regression relation of 0.95 in estimating the percentage of liver parenchyma disrupted by trauma. The model shows an accurate performance in avoiding false positives for patients without any liver parenchymal trauma. These results indicate that the model is generalizable on patients with pre-existing liver conditions, including fatty livers and congestive hepatopathy.ConclusionThe proposed algorithms are able to accurately segment the liver and the regions affected by trauma. This pipeline demonstrates an accurate performance in estimating the percentage of liver parenchyma that is affected by trauma. Such a system can aid critical care medical personnel by providing a reproducible quantitative assessment of liver trauma as an alternative to the sometimes subjective AAST grading system that is used currently.

Funder

National Science Foundation

National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3