Ultrasound-based radiomics analysis for preoperative prediction of central and lateral cervical lymph node metastasis in papillary thyroid carcinoma: a multi-institutional study

Author:

Tong Yuyang,Zhang Jingwen,Wei Yi,Yu Jinhua,Zhan Weiwei,Xia Hansheng,Zhou Shichong,Wang Yuanyuan,Chang Cai

Abstract

Abstract Background An accurate preoperative assessment of cervical lymph node metastasis (LNM) is important for choosing an optimal therapeutic strategy for papillary thyroid carcinoma (PTC) patients. This study aimed to develop and validate two ultrasound (US) nomograms for the individual prediction of central and lateral compartment LNM in patients with PTC. Methods A total of 720 PTC patients from 3 institutions were enrolled in this study. They were categorized into a primary cohort, an internal validation, and two external validation cohorts. Radiomics features were extracted from conventional US images. LASSO regression was used to select optimized features to construct the radiomics signature. Two nomograms integrating independent clinical variables and radiomics signature were established with multivariate logistic regression. The performance of the nomograms was assessed with regard to discrimination, calibration, and clinical usefulness. Results The radiomics scores were significantly higher in patients with central/lateral LNM. A radiomics nomogram indicated good discrimination for central compartment LNM, with an area under the curve (AUC) of 0.875 in the training set, the corresponding value in the validation sets were 0.856, 0.870 and 0.870, respectively. Another nomogram for predicting lateral LNM also demonstrated good performance with an AUC of 0.938 and 0.905 in the training and internal validation cohorts, respectively. The AUC for the two external validation cohorts were 0.881 and 0.903, respectively. The clinical utility of the nomograms was confirmed by the decision curve analysis. Conclusion The nomograms proposed here have favorable performance for preoperatively predicting cervical LNM, hold promise for optimizing the personalized treatment, and might greatly facilitate the decision-making in clinical practice.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3