Author:
Xie Qianrong,Chen Yue,Hu Yimei,Zeng Fanwei,Wang Pingxi,Xu Lin,Wu Jianhong,Li Jie,Zhu Jing,Xiang Ming,Zeng Fanxin
Abstract
Abstract
Background
To develop and validate a quantitative computed tomography (QCT) based radiomics model for discriminating osteoporosis and osteopenia.
Methods
A total of 635 patients underwent QCT were retrospectively included from November 2016 to November 2019. The patients with osteopenia or osteoporosis (N = 590) were divided into a training cohort (N = 414) and a test cohort (N = 176). Radiomics features were extracted from the QCT images of the third lumbar vertebra. Minimum redundancy and maximum relevance and least absolute shrinkage and selection operator were used for data dimensional reduction, features selection and radiomics model building. Multivariable logistic regression was applied to construct the combined clinical-radiomic model that incorporated radiomics signatures and clinical characteristics. The performance of the combined clinical-radiomic model was evaluated by the area under the curve of receiver operator characteristic curve (ROC–AUC), accuracy, specificity, sensitivity, positive predictive value, and negative predictive value.
Results
The patients with osteopenia or osteoporosis were randomly divided into training and test cohort with a ratio of 7:3. Six more predictive radiomics signatures, age, alkaline phosphatase and homocysteine were selected to construct the combined clinical-radiomic model for diagnosis of osteoporosis and osteopenia. The AUC of the combined clinical-radiomic model was 0.96 (95% confidence interval (CI), 0.95 to 0.98) in the training cohort and 0.96 (95% CI 0.92 to 1.00) in the test cohort, which were superior to the clinical model alone (training-AUC = 0.81, test-AUC = 0.79). The calibration curve demonstrated that the radiomics nomogram had good agreement between prediction and observation and decision curve analysis confirmed clinically useful.
Conclusions
The combined clinical-radiomic model that incorporates the radiomics score and clinical risk factors, can serve as a reliable and powerful tool for discriminating osteoporosis and osteopenia.
Funder
Sichuan Medical Association
National Natural Science Foundation of China
Department of Science and Technology of Sichuan Province
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献