3cDe-Net: a cervical cancer cell detection network based on an improved backbone network and multiscale feature fusion

Author:

Wang Wei,Tian Yun,Xu Yang,Zhang Xiao-Xuan,Li Yan-Song,Zhao Shi-Feng,Bai Yan-Hua

Abstract

Abstract Background Cervical cancer cell detection is an essential means of cervical cancer screening. However, for thin-prep cytology test (TCT)-based images, the detection accuracies of traditional computer-aided detection algorithms are typically low due to the overlapping of cells with blurred cytoplasmic boundaries. Some typical deep learning-based detection methods, e.g., ResNets and Inception-V3, are not always efficient for cervical images due to the differences between cervical cancer cell images and natural images. As a result, these traditional networks are difficult to directly apply to the clinical practice of cervical cancer screening. Method We propose a cervical cancer cell detection network (3cDe-Net) based on an improved backbone network and multiscale feature fusion; the proposed network consists of the backbone network and a detection head. In the backbone network, a dilated convolution and a group convolution are introduced to improve the resolution and expression ability of the model. In the detection head, multiscale features are obtained based on a feature pyramid fusion network to ensure the accurate capture of small cells; then, based on the Faster region-based convolutional neural network (R-CNN), adaptive cervical cancer cell anchors are generated via unsupervised clustering. Furthermore, a new balanced L1-based loss function is defined, which reduces the unbalanced sample contribution loss. Result Baselines including ResNet-50, ResNet-101, Inception-v3, ResNet-152 and the feature concatenation network are used on two different datasets (the Data-T and Herlev datasets), and the final quantitative results show the effectiveness of the proposed dilated convolution ResNet (DC-ResNet) backbone network. Furthermore, experiments conducted on both datasets show that the proposed 3cDe-Net, based on the optimal anchors, the defined new loss function, and DC-ResNet, outperforms existing methods and achieves a mean average precision (mAP) of 50.4%. By performing a horizontal comparison of the cells on an image, the category and location information of cancer cells can be obtained concurrently. Conclusion The proposed 3cDe-Net can detect cancer cells and their locations on multicell pictures. The model directly processes and analyses samples at the picture level rather than at the cellular level, which is more efficient. In clinical settings, the mechanical workloads of doctors can be reduced, and their focus can be placed on higher-level review work.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference27 articles.

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.

2. Kurman RJ. The Bethesda system for reporting cervical/vaginal cytologic diagnoses: definitions, criteria, and explanatory notes for terminology and specimen adequacy. Springer, Berlin; 2012.

3. Jangam E, Barreto AAD, Annavarapu CSR. Automatic detection of COVID-19 from chest CT scan and chest X-rays images using deep learning, transfer learning and stacking. Appl Intell. 2022;52:2243–59.

4. Chute DJ, Lim H, Kong CS. BD focalpoint slide profiler performance with atypical glandular cells on SurePath Papanicolaou smears. Cancer Cytopathol. 2010;118(2):68–74.

5. Bengtsson E, Malm P. Screening for cervical cancer using automated analysis of PAP-smears. Comput Math Methods Med. 2014.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3