Abstract
Abstract
Background
We aimed to evaluate the value of using preoperative magnetic resonance imaging (MRI) features and clinical indicators to predict the early response of hepatocellular carcinoma (HCC) to transcatheter arterial chemoembolization (TACE). We also aimed to establish a preoperative prediction model.
Methods
We retrospectively reviewed data of 111 patients with HCC who underwent magnetic resonance imaging (MRI) before the first TACE and underwent MRI or computed tomography between 30 and 60 days after TACE. We used the modified response evaluation criteria in solid tumors for evaluating the TACE response. We used univariate and multivariate logistic regression analyses to identify independent predictors based on MRI features and clinical indicators. Moreover, receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of the prediction model and each independent predictor.
Results
Among the 111 included patients, 85 were men (76.6%). Patient age was 31–86 years (average age, 61.08 ± 11.50 years). After the first treatment session, 56/111 (50.5%) patients showed an objective response (complete response + partial response), whereas the remaining showed non-response (stable disease + local progressive disease). In the univariate analysis, we identified irregular margins, number of nodules, and satellite nodules as predictors of early objective response. However, in the multivariate logistic regression analysis, irregular margins, number of nodules and pretreatment platelet were identified as the independent predictors of early objective response. A combined prediction model was then established, which factored in irregular margins, the number of nodules, and the pretreatment platelet count. This model showed good diagnostic performance (area under the ROC curve = 0.755), with the sensitivity, specificity, positive predictive value, and negative predictive value being 78.6%, 69.1%, 72.1%, and 76.0%, respectively.
Conclusions
Irregular margins, the number of nodules and the pretreatment platelet count are independent predictors of the early response of HCC to TACE. Our clinical combined model can provide a superior predictive power to a single indicator.
Funder
Research Foundation of Beijing Friendship Hospital
Cultivation Scientific Research Foundation of Capital Medical University
Capital Health Research and Development of Special Fund
Beijing Municipal Science & Technology Commission
Beijing Municipal Health Commission, Special Program of Scientific Research on health development in Beijing
National Natural Science Foundation of China
Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference28 articles.
1. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases. Hepatology. 2018;68(2):723–50.
2. Yu R, Fan R, Hou J. Chronic hepatitis B virus infection: epidemiology, prevention, and treatment in China. Front Med. 2014;8(2):135–44.
3. Reig M, Forner A, Rimola J, Ferrer-Fabrega J, Burrel M, Garcia-Criado A, Kelley RK, Galle PR, Mazzaferro V, Salem R, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–93.
4. Bolondi L, Burroughs A, Dufour JF, Galle PR, Mazzaferro V, Piscaglia F, et al. Heterogeneity of patients with intermediate (BCLC B) hepatocellular carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis. 2012;32(4):348–59.
5. Sciarra A, Ronot M, Di Tommaso L, Raschioni C, Castera L, Belghiti J, et al. TRIP: a pathological score for transarterial chemoembolization resistance individualized prediction in hepatocellular carcinoma. Liver Int. 2015;35(11):2466–73.