Development and application of a microarray meter tool to optimize microarray experiments

Author:

Rouse Richard JD,Field Katrine,Lapira Jennifer,Lee Allen,Wick Ivan,Eckhardt Colleen,Bhasker C Ramana,Soverchia Laura,Hardiman Gary

Abstract

Abstract Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference18 articles.

1. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts C, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO, Friend SH: Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 1998, 4: 1293-1301. 10.1038/3282.

2. Hardiman G: Microarrays Technologies 2006: an overview. Pharmacogenomics. 2006, 8: 1153-1158. 10.2217/14622416.7.8.1153.

3. Bowtell DDL: Options available – from start to finish for obtaining expression data by microarray. Nature Genetics. 1999, 21: 25-32. 10.1038/4455.

4. Rouse R, Verdun K, Hardiman G: DNA microarrays and the core facility. Microarray Methods and Applications. Edited by: Hardiman G. 2003, DNA Press Inc., Eagleville, PA, 3: 37-66.

5. Chandrasekharappa S, Holloway A, Iyer V, Monte D, Murphy M, Nowak NJ: Generation of probes for spotted microarrays. DNA Microarrays: A Molecular Cloning Manual. Edited by: Bowtell D, Sambrook J. 2003, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1-60.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3