1. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386
2. Karimi D, Dou HR, Warfield SK, Gholipour A (2020) Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med Image Anal 65:101759. https://doi.org/10.1016/j.media.2020.101759
3. Arpit D, Jastrzębski S, Ballas N, Krueger D, Bengio E, Kanwal MS et al (2017) A closer look at memorization in deep networks. In: Proceedings of the 34th international conference on machine learning, JMLR.org, Sydney, 6-11 August 2017
4. Han B, Yao QM, Yu XR, Niu G, Xu M, Hu WH et al (2018) Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Curran Associates Inc., Montréal, 2-8 December 2018
5. Li JN, Socher R, Hoi SCH (2020) DivideMix: learning with noisy labels as semi-supervised learning. In: Proceedings of the 8th international conference on learning representations, OpenReview.net, Addis Ababa, 26-30 April 2020