A data-driven algorithm to support the clinical decision-making of patient extrication following a road traffic collision

Author:

Vaughan-Huxley Eyston,Griggs Joanne,Mohindru JasmitORCID,Russell Malcolm,Lyon Richard,Avest Ewoud ter

Abstract

Abstract Background Some patients involved in a road traffic collision (RTC) are physically entrapped and extrication is required to provide critical interventions. This can be performed either in an expedited way, or in a more controlled manner. In this study we aimed to derive a data-driven extrication algorithm intended to be used as a decision-support tool by on scene emergency service providers to decide on the optimal method of patient extrication from the vehicle. Methods A retrospective observational study was performed of all trauma patients trapped after an RTC who were attended by a Helicopter Emergency Medical Service (HEMS) in the United Kingdom between March 2013 and December 2021. Variables were identified that were associated with the need for HEMS interventions (as a surrogate for the need for expedited extrication), based on which a practical extrication algorithm was devised. Results During the study period 12,931 patients were attended, of which 920 were physically trapped. Patients who scored an “A” on the AVPU score (n = 531) rarely required HEMS interventions (3%). Those who did were characterised by a shorter than average (29 vs. 37 min) 999/112 emergency call to HEMS on-scene arrival interval. A third of all patients responding to voice required HEMS interventions. Absence of a patent airway (OR 6.98 [1.74–28.03] p < .001) and the absence of palpable radial pulses (OR 9.99 [2.48–40.18] p < .001) were independently associated with the need for (one or more) HEMS interventions in this group. Patients only responding to pain and unresponsive patients almost invariably needed HEMS interventions post extrication (90% and 86% respectively). Based on these findings, a practical and easy to remember algorithm “APEX” was derived. Conclusion A simple, data-driven algorithm, remembered by the acronym “APEX”, may help emergency service providers on scene to determine the preferred method of extrication for patients who are trapped after a road traffic collision. This has the potential to facilitate earlier recognition of a ‘sick’ critical patient trapped in an RTC, decrease entrapment and extrication time, and may contribute to an improved outcome for these patients.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3