Author:
Xie Ying,Huang Yu,Li Zhi-Yong,Jiang Weihua,Shi Nan-Xi,Lu Yuanzhi,Cao Guangchao,Yin Zhinan,Lin Xue-Jia
Abstract
Abstract
Background
Dysregulation of immune surveillance is tightly linked to the development of metabolic dysfunction-associated steatohepatitis (MASH)-driven hepatocellular carcinoma (HCC); however, its underlying mechanisms remain unclear. Herein, we aimed to determine the role of interleukin-21 receptor (IL-21R) in MASH-driven HCC.
Methods
The clinical significance of IL-21R was assessed in human HCC specimens using immunohistochemistry staining. Furthermore, the expression of IL-21R in mice was assessed in the STAM model. Thereafter, two different MASH-driven HCC mouse models were applied between IL-21R-deficient mice and wild type controls to explore the role of IL-21R in MASH-driven HCC. To further elucidate the potential mechanisms by which IL-21R affected MASH-driven HCC, whole transcriptome sequencing, flow cytometry and adoptive lymphocyte transfer were performed. Finally, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescent staining, chromatin immunoprecipitation assay and western blotting were conducted to explore the mechanism by which IL-21R induced IgA+ B cells.
Results
HCC patients with high IL-21R expression exhibited poor relapse-free survival, advanced TNM stage and severe steatosis. Additionally, IL-21R was demonstrated to be upregulated in mouse liver tumors. Particularly, ablation of IL-21R impeded MASH-driven hepatocarcinogenesis with dramatically reduction of lipid accumulation. Moreover, cytotoxic CD8+ T lymphocyte activation was enhanced in the absence of IL-21R due to the reduction of immunosuppressive IgA+ B cells. Mechanistically, the IL-21R-STAT1-c-Jun/c-Fos regulatory axis was activated in MASH-driven HCC and thus promoted the transcription of Igha, resulting in the induction of IgA+ B cells.
Conclusions
IL-21R plays a cancer-promoting role by inducing IgA+ B cells in MASH-driven hepatocarcinogenesis. Targeting IL-21R signaling represents a potential therapeutic strategy for cancer therapy.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
111 Project
Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program
Pearl River S & T Nova Program of Guangzhou, China
Publisher
Springer Science and Business Media LLC