A novel approach for T7 bacteriophage genome integration of exogenous DNA

Author:

Liu Ying,Huang Hongxing,Wang Hua,Zhang YanORCID

Abstract

Abstract Background The comparatively small genome, well elucidated functional genomics and rapid life cycle confer T7 bacteriophage with great advantages for bio-application. Genetic manipulation of T7 genome plays a key role in T7 related applications. As one of the important aspects in T7 phage genetic modification, gene knock-in refers to two main approaches including direct genetic manipulation in vitro and recombineering. Neither of these available methods are efficient enough to support the development of innovative applications capitalizing on T7 bio-system and thus there is room for novel strategies that address this issue. Integration mediated by the ΦC31 integrase is one of the most robust site-specific recombination systems. ΦC31 integrases with enhanced activity and specificity have been developed such that it is ideal to effectuate exogenous DNA knock-in of T7 phage with advanced ΦC31 integrase. Methods Plasmid construction was conducted by routine molecular cloning technology. The engineered T7 bacteriophages were constructed through homologous recombination with corresponding plasmids and the functional T7 phage was designated as T7∆G10G11-attB. In the integration reaction, hosts with both executive plasmids (pEXM4) and donor plasmids (pMCBK) were lysed by T7∆G10G11-attB. Progenies of T7 phages that integrated with pMCBK were isolated in restrict hosts and validated by sequencing. T7∆G10G11-attB capacity limit was explored by another integration reactions with donor plasmids that contain exogenous DNA of various lengths. Results T7∆G10G11-attB exhibits abortive growth in restrictive hosts, and a bacterial attachment site recognized by ΦC31 integrase (attB) was confirmed to be present in the T7∆G10G11-attB genome via sequencing. The integration reaction demonstrated that plasmids containing the corresponding phage attachment site (attP) could be integrated into the T7∆G10G11-attB genome. The candidate recombinant phage was isolated and validated to have integrated exogenous DNA. The maximum capacity of T7∆G10G11-attB was explored, and it’s found that insertion of exogenous DNA sequences longer than 2 kbp long can be accommodated stably. Conclusion We advanced and established a novel approach for gene knock-in into the T7 genome using ΦC31 integrase.

Funder

Guangdong Science and Technology Department

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3