A streptavidin–biotin system combined with magnetic actuators for remote neuronal guidance

Author:

Levenberg Dafna Rivka,Varon Eli,Indech Ganit,Ben Uliel Tal,Geri Lidor,Sharoni Amos,Shefi Orit

Abstract

AbstractThe ability to control neuronal mobility and organization is of great importance in developing neuronal interfaces and novel therapeutic approaches. An emerging promising method is the manipulation of neuronal cells from afar via magnetic forces. Nevertheless, using magnetic iron oxide nanoparticles as internal actuators may lead to biotoxicity, adverse influence on intracellular processes, and thus requires prerequisite considerations for therapeutic approaches. Magnetizing the cells via the incorporation of magnetic particles that can be applied extracellularly is advantageous. Herein, we have developed a magnetic system based on streptavidin–biotin interaction to decorate cellular membrane with magnetic elements. In this model, superparamagnetic microparticles, coated with streptavidin, were specifically bound to biotinylated PC12 cells. We demonstrated that cell movement can be directed remotely by the forces produced by pre-designed magnetic fields. First, using time lapse imaging, we analyzed the kinetics of cell migration towards the higher flux zone. Next, to form organized networks of cells we designed and fabricated micro-patterned magnetic devices. The fabricated devices were composed of a variety of ferromagnetic shapes, sputter-deposited onto glass substrates. Cells that were conjugated to the magnetic particles were plated atop the micro-patterned substrates, attracted to the magnetic actuators and became fixed onto the magnetic patterns. In all, our study presents a novel system based on a well-known molecular technology combined with nanotechnology that may well lead to the expansion of implantable magnetic actuators to organize and direct cellular growth.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3