Tissue engineering in age-related macular degeneration: a mini-review

Author:

Wu Andres,Lu Renhao,Lee Esak

Abstract

AbstractAge-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative (‘dry’) AMD and exudative (‘wet’) AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch’s membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch’s membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3