SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding

Author:

Liu Qingxiu,Zhang Wei,Chen Siying,Zhuang Zhenjing,Zhang Yi,Jiang Lingli,LIN Jun Sheng

Abstract

Abstract Background Aptamers, single-stranded DNAs or RNAs, can be selected from a library containing random sequences using a method called Systematic Evolution of Ligands by EXponential Enrichment (SELEX). In SELEX, monitoring the enriching statuses of aptamer candidates during the process is a key step until today. Conformational change of an aptamer caused by target-binding in gel can be used to indicate its statuses of binding. Results In this study, an easy-to-implement gel-based diffusion method (GBDM) was developed to monitor the interaction between enriched aptamer candidates and their targets. In order to prove the concept, characterization of aptamers targeting their targets including protein (thrombin) and non-protein molecules (acetamiprid, ATP, atrazine, profenofos and roxithromycin), respectively, were performed using mini gels. Our method has advantages over the common methods including easy performed with labor- and time- saving in experimental operation. The concept has been proven by monitoring enrichment of dynamic aptamer candidate libraries targeting a small molecule 2,2-bis(4-chlorophenyl) acetic acid (DDA) during SELEX process. A mini gel cassette was designed and fabricated by our laboratory to make mini agarose gels for diffusion with different directions. Conclusions These results indicate that GBDM, in particular, chasing diffusion is suitable for monitoring the interaction between enriched aptamer candidates and their targets. These pioneering efforts are helpful for novel aptamer selection by breaking through the technical bottleneck of aptamer development and helpful for development of novel aptasensors.

Funder

National Key R&D Program of China

Huaqiao University

Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University

Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3