Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression

Author:

Si Jinchao,Guo Jingya,Zhang Xu,Li Wei,Zhang Shen,Shang Shuyu,Zhang Quanwu

Abstract

Abstract Background Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. Methods The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2’-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. Results Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. Conclusion Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.

Funder

the Health Commission of Henan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3