Oxidative degradation of archaeological wood and the effect of alum, iron and calcium salts

Author:

McQueen Caitlin M. A.,Mortensen Martin N.,Caruso Francesco,Mantellato Sara,Braovac Susan

Abstract

AbstractOxygen consumption measurement was used to study potential oxidative degradation reactions occurring in wooden artefacts from the Viking age Oseberg collection in Norway. Model samples of fresh birch were impregnated with iron, calcium and alum salts to mimic concentrations of such compounds found in Oseberg artefacts and to assess their effect on oxygen consumption rates. The results showed that heated impregnation with alum salt (KAl(SO4)2·12H2O) significantly increased the rate of oxygen consumption, confirming a previously observed link between alum-treatment and wood oxidation. The presence of iron salts in alum-treated wood specimens, even at low concentrations, also substantially increased the oxidation rate. However, the mechanism by which this occurred appeared to be influenced by the alum-treatment. Samples treated with both iron and calcium salts were also studied, in order to investigate a proposed inhibition of iron-induced oxidation by calcium ions. However, these did not appear to consume oxygen at significantly different rates. In Oseberg samples, a large variation in oxygen consumption rates from 0.48 to an apparent 8.2 μg O2 (g wood)−1 day−1 was observed, and these values were consistently higher than those for reference fresh wood. The results demonstrated that oxygen consumption measurement is a viable method of evaluating chemical stability in this case, but is best applied to model samples with limited compositional variability.

Funder

Norwegian Ministry of Education and Research

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology,Conservation

Reference39 articles.

1. Braovac S, McQueen CMA, Sahlstedt M, Kutzke H, Łucejko JJ, Klokkernes T. Navigating conservation strategies: linking material research on alum-treated wood from the Oseberg collection to conservation decisions. Heritage Sci. 2018;6:77.

2. Elding L. Vasa–recent preservation research. In: Strætkvern K, Williams E, editors. Proceedings of the 11th ICOM group on wet organic archaeological materials conference, Greenville 2010. Greenville: ICOM-CC-WOAM; 2012. p. 371–382.

3. Fors Y, Magnus S. Sulfur and iron in shipwrecks cause conservation concerns. Chem Soc Rev. 2006;35:399–415.

4. MacLeod ID, Kenna C. Degradation of archaeological timbers by pyrite: oxidation of iron and sulphur species. In: Hoffman P editor. Proceedings of the 4th ICOM-group on wet organic archaeological materials conference; 1990. Bremerhaven: ICOM International Committee for Conservation Working Group on Wet Archaeological Materials; 1991. p. 133–142.

5. Skinner T, Jones M. Respirometry: a technique to assess the stability of archaeological wood and other materials containing sulfur compounds. In: Strætkvern K, Huisman DJ, editors. Proceedings of the 10th ICOM group on wet organic archaeological materials conference, Amsterdam 2007. Amersfoort: Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, 2009. p. 517–524.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3